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We investigate a model system of a chemically reactive binary mixture, where the simple reactionA
B
between the two constituents of the mixture occurs simultaneously with spinodal decomposition. The compe-
tition between the thermodynamic short-range attractive and the reactive long-range repulsive interactions
leads to the formation of steady-state patterns. In the case of equal forward and backward reaction rates the
steady-state average domain width,R` , scales with the reaction rate,G, asR`;(1/G)s, where the exponent
s equals approximately13 for low rates and equals exactly14 for high rates. These exponent values and the
variation of the maximum amplitude of the order parameter with the reaction rate can be derived by minimiz-
ing the free energy in a square wave and a single mode approximation, respectively. The phase segregation
dynamics is simulated numerically using the appropriate Langevin equation.@S1063-651X~96!50509-X#

PACS number~s!: 05.70.Fh, 64.60.Cn, 47.54.1r, 61.20.Ja

In recent years there has been a growing interest in physi-
cal and chemical systems exhibiting periodic macroscopic
patterns and textures. Typical morphologies are stripes, laby-
rinthine patterns, and circular or spherical droplets which are
found in such diverse systems as type I superconductors,
Langmuir films, diblock copolymers, and chemical mixtures.
The suggested mechanism giving rise to the formation of
periodic textures is a competition between interactions of
different ranges and strengths favoring spatial inhomogene-
ities in an otherwise uniform ground state@1#.

In this paper we investigate a simple model system, pro-
posed by Glotzeret al. @2#, of a chemically reactive binary
mixture. Here a chemical reaction of the formA
B be-
tween the two constituents occurs simultaneously with spin-
odal decomposition@3#. The chemical reaction, which can be
identified as an effective long-range repulsive interaction,
tends to spatially mix the two components causing the phase
separation process to evolve into a labyrinthine steady-state
pattern in which the demixing thermodynamic and mixing
reactive processes balance.~See Refs.@4,5# for recent experi-
mental and theoretical investigations of similar systems.!

The model is a binary (A-B) mixture described by an
order parameterf(r ,t) (21,f,1), the local concentra-
tion difference of the components. When the mixture, ini-
tially in a homogeneous equilibrium state, is rapidly cooled
~quenched! into the two-phase coexistence region, small in-
homogeneities in the order parameter evolve into macro-
scopic domains of uniform phasef521 or f51. The
well-known Cahn-Hilliard equation@6# describing the time
evolution of the order parameter fluctuations,f(r ,t), follow-
ing a critical quench, is extended in order to include the
chemical reactionA
B,

]f

]t
5M¹2

dF@f#

df
2G1~11f!1G2~12f!, ~1!

whereG1 andG2 denote the forward and backward reaction
rates, respectively. HereM is a mobility, andF@f# a coarse-
grained free energy functional of the Ginzburg-Landau form,

F@f#5*ddr „f (f)1(k/2)(¹f)2…, where k is a phenom-
enological constant related to the interaction range. The bulk
free energy f (f) has the usual double-well structure,
f (f)52(r /2)f21(u/4)f4, where r and u are positive
phenomenological constants. Since we study the model at
zero temperature there is no noise term in Eq.~1! and the
statistical nature of the problem appears in the random initial
conditions, which have to be averaged over.

Since for unequal rates the system settles in an uninterest-
ing uniform one component phase, we restrict ourselves to
the case of equal forward and backward reaction rates. With
G[G15G2, Eq. ~1! takes the form

]f

]t
5M¹2

dF@f#

df
22Gf. ~2!

As a first observation we notice that for a large reaction rate
the reaction term dominates, leading to an exponential decay
of the order parameter. Contrary to the demixing caused by
the underlying thermodynamics, the effect of the chemical
reaction is thus to spatially mix the two components. For-
mally, the type of interaction introduced by the chemical
reaction can be identified by rewriting Eq.~2! as
]f/]t5M¹2dF@f#/df with the effective free energy@7,8#,

F@f~r ,t !#5F@f~r ,t !#

1
G

ME E ddrddr 8f~r ,t !G~r ,r 8!f~r 8,t !,

~3!

whereF@f# is the Ginzburg-Landau functional from above
andG(r ,r 8) is the Green’s function defined by the Poisson
equation,¹2G(r ,r 8)52d(r2r 8). In three dimensions, for
example, with suitable boundary conditions,G(r ,r 8) has the
form of a Coulomb potential,G(r2r 8)5(4pur2r 8u)21.
The free energy in Eq.~3! thus contains both a short-range
attractive interaction whose strength is controlled byk, and a
nonlocal effective long-range repulsive interaction character-
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ized byG. As a result the modified Cahn-Hilliard equation
@Eq. ~2!# describes phase separation in a system with com-
peting interactions@9#.

The initial evolution of perturbations in the order param-
eter is revealed by a linear stability analysis of Eq.~2!, @10#.
Transforming to dimensionless variables,r→Ak/r r ,
t→(k/2Mr 2)t, f→Ar /uf, and G→(Mr 2/k)G, and per-
forming the functional differentiation, Eq.~2! takes the form

]f

]t
5
1

2
¹2~2f1f32¹2f!2Gf. ~4!

Linearizing in Fourier space aboutf50 one finds that the
fluctuations,dfk , in the order parameter decay exponen-
tially, dfk(t)5dfk(0)exp@2gk(G)t#, with rate
gk(G)51/2(k42k212G). Since onlyk modes with positive

gk(G) are damped, the rootsk75@ 1
2(17A128G)#1/2 of

gk(G) ~existing only for 0<G< 1
8) define long and short

wavelength cutoffs for the unstablek modes. The former is
of greater interest since such a cutoff is not present in the
case of spinodal decomposition (G50). The effect of the
long wavelength cutoff is to dampen the soft modes, thus
preventing continuing domain coarsening; that is, the phase
separation is frozen owing to the presence of the chemical

reaction. We notice thatG5 1
8 is the upper limit for reaction

rates allowing phase separation.
We have solved Eq.~4! numerically using a standard

finite-difference scheme@11# on two-dimensional lattices of
size 2563 256. In order to ensure that finite size effects are
not relevant, smaller systems were also investigated. Appro-
priate to a critical quench the system was initially prepared
in the homogeneous single phase state by assigning to each
lattice site a small random number uniformly distributed
aboutf50. We have monitored the time evolution of the
patterns formed by calculating the average domain size,
R(t), as 2p/k1(t), wherek1(t)5^*dk kS(k,t)/*dk S(k,t)&
is the first moment of the circularly averaged structure factor
S(k,t). Here^& means an average over random initial condi-
tions implemented by several independent runs. In the ab-
sence of the chemical reaction, the system exhibits the usual
Lifshitz-Slyozov growth@12# where, at late times after the
quench, the characteristic domain size,R(t), scales dynami-
cally asR(t);t1/3. In addition, the structure factor satisfies
the scaling form,S(k,t)5R(t)2g„kR(t)…, which implies that
R(t) is the only characteristic length scale in the problem
@3#. However, for nonzero reaction rates we observe that the
phase separation process is eventually halted, and the system
reaches a steady-state configuration with a characteristic time
independent domain size,R` ~Fig. 1!.

The dynamical evolution of the system prior to saturation
behaves in two markedly different manners depending on
whether the reaction rate is high or low. For low reaction
rates the average domain size scales in an intermediate pe-
riod before saturation approximately asR(t);t1/3. For high
reaction rates, on the other hand, no such intermediate scal-
ing is observed, as the system rapidly reaches its asymptotic
state~Fig. 1!. Despite the intermediate scaling ofR(t) at low
rates we find, however, no evidence that the structure factor
satisfies the above-mentioned scaling law for any nonzero

reaction rates. We interpret this lack of scaling of the struc-
ture factor as being due to the presence of several competing
length scales@5#.

In accordance with Glotzeret al. @2# our simulations show
that the average width of the steady-state domains scales
with the inverse reaction rate asR`;(1/G)s, where the scal-
ing exponents approaches the value13 ~we finds50.29) for
low rates, i.e.,G.0. In addition we find that the steady-state
systems also exhibit this scaling behavior for high rates,

G. 1
8, only now with with s50.25 @13#. These exponents

have earlier been derived numerically by Liu and Goldenfeld
@7# in an investigation of the phase segregation dynamics of
a diblock copolymer system which accidentally is governed
by an equation of motion identical to Eq.~2!.

The dynamical properties of the system, for small reaction
rates, can be given a formal description by the introduction
of a single scaling form which captures both the dynamical
scaling ofR(t) and the static scaling ofR` . The average
domain size,R(t), may be written as@7,14#

R~ t !5taF~Gt !, ~5!

wherea5 1
3 is the Lifshitz-Slyozov dynamical scaling expo-

nent, andF(x) is a scaling function with the asymptotic
behaviorsF(x)→const, x→0, and F(x);x2a for x@1.
ThenR(t)→R`;G2s as t→` andR(t);ta for G→0. In
Fig. 1 we test this scaling form by plotting
log„R(t)t21/3/R`… versus log(Gt), and find that systems with
sufficiently low rates satisfy this relation, whereas the rela-
tion is violated by high rate systems. The values of the reac-
tion rate for which Eq.~5! is satisfied gives rise to the expo-
nents50.29, whereas the high rates for which Eq.~5! is not
obeyed yields the exponents50.25. Due to the characteristic
average domain sizes the scaling regimes corresponding to

s5 1
3 ands5 1

4 are designated the strong and weak segrega-
tion regimes, respectively.

The steady-state systems formed at high rates are charac-
terized by weakly segregated domains with a labyrinthine or
stripelike morphology@Fig. 2~b!#. The corresponding struc-

FIG. 1. Test of the scaling form Eq.~5!. Low rate systems~solid
lines! satisfy the scaling form, whereas the form is violated by high
rate systems~dashed lines!. The inset shows the time evolution of
the average domain size for various values ofG. A: spinodal de-
composition.B andC: low rate systems which scale asR(t);t1/3

in an intermediate time period prior to saturation.D andE: high
rate systems which quickly reach the saturation regime. The long-
dashed straight lines in both graphs have slope1

3.
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ture factor is very sharply localized, and we therefore pro-
pose to describe the steady-state configurations by a single
mode approximation, in which the modulation of the order
parameter is given byf;cos(kx). In addition to the variation
of the average domain size with the reaction rate, we also
find another functional dependence ofG. Comparing the pro-
files of the steady-state patterns for low and high rate sys-
tems @Figs. 2~a! and 2~b!#, we observe that the maximum

amplitude of the order parameter, the saturation amplitude,
decreases with increasing reaction rate. The mixing effect of
the chemical reaction tends to diminish the amplitude of the
order parameter, whereas the demixing caused by the ther-
modynamics has the opposite effect on the field amplitude.
Thus the value of the saturation amplitude for a given
strength of the chemical reaction reflects the level at which
these counteracting interactions balance. When the chemical
reaction is absent, the saturation amplitude is determined by
the minimas of the potentialf (f) located at6Ar /u, or,
expressed in dimensionless variables, at61. The initial
growth of fluctuations ceases when the order parameter am-
plitude ufu has reached its saturation valuefsat . Sharp do-
main walls are then formed, and further temporal evolution
takes place through mutual annihilation of these walls in the
process of smaller domains coalescing into larger ones. In
the case of spinodal decomposition the saturation amplitude
is unity, whereas for nonzero reaction rates we observe a
monotonic decrease of the saturation amplitude of the
steady-state patterns, as a function of the reaction rate~Fig.
3!.

In order to incorporate the variation of the saturation am-
plitude with the reaction rate, the order parameter at high
reaction rates should thus be approximated by thecosine
form f5fsatcos(kx). The dependence of the saturation
amplitude and the wave number on the reaction rate can
then be determined by substituting thecosineansatz into
the free energy expression and minimizing with respect
to k and fsat . Using the~1D! dimensionless form of the

free energy @Eq. ~3!# F5 1
2*dx@2 1

2f
211

4f
411

2(]f/]x)2#
1G/2*dx dx8f(x)G(x,x8)f(x8), with the Green’s function
G(x,x8)50 andG(x,x8)5(x82x) for x,x8 andx.x8, re-
spectively, the free energy per volume becomes

F~fsat ,k!5
1

8 F S 211k21
2G

k2 Dfsat
2 1

3

8
fsat
4 G . ~6!

Determining fsat and ksat by solving dF/dfsat50 and
dF/dk50 yields ksat5(2G)1/4 and fsat(G)
52A122A2G/A3. Noting thatR`;ksat

21 we conclude that
the single mode approximation correctly reproduces the

simulation results5 1
4, valid for high reaction rates@15#. The

FIG. 2. Steady-state patterns of 64364 systems, along with
their circularly averaged structure factors, and profiles extracted
from the lines bisecting the patterns for systems belonging to~a! the
strong and~b! the weak segregation regime.

FIG. 3. The behavior of the saturation amplitude as obtained by
simulations (d) compared with the analytical expressions obtained
in the single mode approximation.
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obtained expression forfsat(G) should be valid for reaction
rates near18, and comparison with simulation data show that
this is indeed the case~Fig. 3!.

For lower values ofG the morphology of the steady-state
configurations is irregular and the corresponding structure
factor contains many modes. Thecosineapproximation is
therefore not applicable, as is also revealed by the profile of
the low rate system in Fig. 2~b!. Ideally one should consider
domains separated by an interface described by a hyperbolic
tangent profile which is the exact solution in the limit
G→0, @3#. This, however, complicates the calculations and it
is more convenient to approximate an interface by a square
wave form, i.e.,f(x)5fsat@122u(x2l/2)#, for 0,x,l,
where u(x) is a Heaviside step function. Substituting this
expression into the free energy gives

F~fsat ,l!5
1

2 S 2
1

2
1

Gl2

12 Dfsat
2 1

1

8
fsat
4

1
1

4lE0
`

dxS ]f

]x D 2, ~7!

where the selected wave vector isksat52p/l. The integral
over the gradient square term diverges formally for a square
wave and we regularize this term by using the hyperbolic
tangent profile,f(x)5fsattanh(x/z) at each interface, where
z→A2 andfsat→1 in the limit G→0. Hence the free en-
ergy @Eq. ~7!# is

F~fsat ,l!5
1

2 S 2
1

2
1

Gl2

12
1

4

3zl Dfsat
2 1

1

8
fsat
4 . ~8!

Minimizing Eq. ~8! with respect tofsat and l gives
l52(Gz)21/3.2(A2G)21/3 and fsat(G)5A12(8G/z2)1/3

.A12(4G)1/3. Thus, sincel;(1/G)1/3, the square wave ap-

proximation recovers the results5 1
3 suggested by numerical

work. These results are valid in the strong segregation limit
~i.e.,G!1) for whichz!l. We conclude by noting that the
important difference between the weak and strong segrega-
tion limits is that they correspond to an interfacial thickness
that is of the order of the selected wavelength (z;l) and
negligible (z!l), respectively.

In summary, we have identified two segregation regimes
characterized by different dynamical evolutions prior to satu-
ration and different scaling exponents for the static scaling of
the steady-state domain sizes with the inverse reaction rate.
The scaling exponents were derived analytically by minimiz-
ing the free energy using the order parameter profiles char-
acterizing each regime. That is acosineand asquare wave
variation for high and low reaction rates, respectively.

J.J.C. and H.C.F. wish to thank Ole G. Mouritsen for
attracting our attention to this problem and Alan J. Bray for
helpful discussions.
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